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Abstract
Biological control has received increasing interest in recent decades as one of the alternatives to chemical pesticides in the 
field of plant disease control, especially after the increased awareness of the dangers of pesticides to the environment in 
general and human health in particular, and the emergence of resistance to pesticides in some causes. Biological control is 
defined as any conditions or procedures in which a particular organism or substances produced from a living organism are 
used to reduce infection with a particular pathogen. Plant growth promoting rhizobacteria (PGPR) are able to stimulate growth 
and resistance against plant diseases when they are able to have a positive effect on the plant health, and then demonstrate 
good competitive qualities and capabilities over existing rhizosphere communities. PGPR affects plant growth improvement 
by fixing atmospheric nitrogen, siderophore production dissolving insoluble phosphates, and releasing hormones. In this 
review, we tried to focus on the potential effects of PGPR as an effective and safe technique for plant disease resistance. 
PGPR play a major role in plant disease resistance through induced systemic resistance (ISR), antibiotics, hydrogen cyanide, 
Lytic enzyme, degradation of toxins, competition for nutrients, and parasitism.
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Introduction

Plants throughout the world are infected by approximately 
80,000 diseases, and the majority of them are described as 
soil-borne diseases. These diseases lead to the destruction 
of crops, which is considered a huge reason for world starva-
tion, as recorded in 2015, by the hunger statistic of World 
Food Program (WFP) that 815 million people in the world, 
on average, one in nine is suffering from starvation (Ghosh 
et al. 2019).

The definition of soil-borne plant pathogens according to 
Koike et al. (2003) include pathogens that infect the plant 
through the soil, while Katan (2017) reported soil-borne 
pathogens as those pathogens present during one part of their 
lives at least and that can survival in soil. The structure and 
severity of soil borne pathogens communities differ depend-
ing on cultivar types and the plant age, nutritional status, and 
external stresses (Al-Hazmi et al. 1993; Ferreira et al. 2008; 
Krechel et al. 2002; Manici and Caputo 2009). Soil-borne 
pathogens have harmful effects on crops in a number of ways 
(Jambhulkar et al. 2015). The serious troubles caused by soil 
borne pathogens in crop production worldwide include sharp 
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reduction in crops and drop in total yield, which leads to 
higher costs of product (Panth et al. 2020).

Soil is a fertile reservoir of microorganisms responsible 
for its main functions in universal ecosystems. The biodi-
versity of vegetation is directly influenced by the interaction 
between soil microorganisms and plants (Aislabie et al. 2013). 
Reynolds et al. (2003) recorded that plant–soil borne microor-
ganisms interactions were defined as drivers of plant system 
composition and dynamics. Matei et al. 2017 and Weller et al. 
2002 reported that soil borne microorganisms are involved in 
soil forming processes, making a major contribution to mess 
decomposition and humus formation, and the capacity of soil 
to control the development of plant pathogens.

Walker et al. (2003) defined rhizosphere as a zone of soil 
around the plant root which is directly affected by the secre-
tions of the plant root system. Microorganisms isolated from 
rhizosphere of healthy pepper plants are effective not only 
against the pepper root rot pathogens but also have activity 
as biofertilizer agents (El-feky et al. 2019).

Biological control is not affective against some soil borne 
pathogens such as root-lesion nematodes because they fre-
quently live within plant roots (Stirling 2014). Application of 
biological control against nematodes is limited, although this 
has been applied against potato nematodes (Palomares-Rius 
et al. 2014; Stirling 2014). Therefore, this review focused 
on factors affecting soil borne diseases, the role of PGPR in 
disease management and control of fungal, bacterial, viral, 
and nematode soil borne diseases by PGPR.

Factors affecting soil‑borne diseases

Effects of abiotic factors on soil‑borne diseases

Disease results from the interaction between the pathogen 
plant, but its severity development is affected by soil abi-
otic factors such as soil texture, pH, organic matter content, 
temperature and moisture content, and biotic components 
affecting the host and/or the pathogen (Alabouvette et al. 
1996) including the following.

Soil temperature, moisture, texture, pH, and organic 
matter

Soil temperature has a major importance in pathogen growth 
rate, which directly affects the disease development and 
severity (Bouchek-Mechiche et al. 2000; Singh et al. 2005).

Soil moisture content influences disease severity as well 
as the opening of the lenticels, which are considered entry 
points for tuber infection in potato. Moisture content is 
increased due to heavy soils, poor irrigation drainage, and 
abundant rainfalls (Helias 2008).

Most fungal soil borne diseases are activated in light 
sandy soils, but generally clay soils are suitable for bac-
terial activity (Alabouvette et al. 1996; Marshall 1975). 
Growth of rhizoctonia is restricted at high matric poten-
tials but spreads as a positive correlation porosity with 
larger pores (Harris et al. 2003). Extreme pH soils are 
often highly repressive to many plant pathogens and dis-
ease development (Höper and Alabouvette 1996). Plant 
diseases appearance and severity are affected by the quan-
tity and quality of the organic matter in soil (Alabouvette 
et al. 1996).

Effects of biotic factors on the development of soil 
borne diseases

Inoculum sources, dissemination, survival, and density

At favorable conditions such as moisture, temperature, 
and soil type, bacteria can survive over winter in soil 
(Loria et al. 2008). Nematodes can survive and persist 
in soil in eggs surrounded by cysts or as juveniles in host 
roots (Meloidogyne spp.) (Wharton and Worland 2001). 
In the absence of resistant structures and of efficient 
saprophytic abilities, some pathogens need alternative 
hosts to survive in the absence of a main host, these 
frequently act as a reservoir of the pathogen (Tomlinson 
et al. 2005).

Finally, spores or mycelium of fungi are transported by 
water (rain, irrigation, and flow in soil), by soil adhering to 
farm equipment, or by contaminated seed (Bae et al. 2007). 
Moreover, some pathogens liberate mobile dissemination 
forms that are responsible for short distance dissemination 
of these pathogens (Merz and Falloon 2009).

As some diseases develop, their severity increases with 
increasing of inoculum density, such as black scurf (Papp 
et al. 2021); contrary to some diseases that decrease as 
increasing inoculum density, such as silver scurf (Tsror and 
Peretz‐Alon 2005).

Cultural practices

Crop rotation

Crop rotation is a very important tactic for controlling some 
soil borne diseases, but it cannot control other pathogens that 
able to survive a long time in soil such as saprophyte or as 
a dormant structure in soil such as Globodera. At the same 
time, the application of crop rotation to avoid the main and 
alternative hosts is a very important agent to control soil 
borne pathogens (Merz and Falloon 2009; Peters et al. 2004; 
Samaliev et al. 1998).
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Fertilization and amendments, and tillage management

Organic fertilizers, especially compost, are effective as dis-
ease suppression (Raviv 2005). Superficial tillage or no till-
age resulted to disease suppression (Peters et al. 2004).

Organic farming versus conventional agriculture, 
and mechanisms of infection

Disease incidence severity depended mainly on the soil type 
(Messiha et al. 2007). Generally, organic farming is more 
efficient than conventional agriculture to control soil-borne 
diseases in the long-term (Khalil et al. 2015; van Bniggen and 
Termorskuizen 2003).

Cellulose is the primary barrier against biotic and abiotic 
stress in most plants (Locke 2002). Soil borne pathogens have 
different mechanisms to attack the host plant and destroy its natu-
ral walls through introduction into the roots, young buds, under-
ground stems, stolons, tubers, or through wounds (Stevenson 
et al. 2001; Taylor et al. 2004), whereas other pathogens such as 
bacteria and fungi can be introduced by degradation of the host’s 
cells barrier directly by mechanical and/or enzymatic degradation 
such as cellulases, pectinases, xylanases, and proteases, or by 
natural openings (stomata, lenticels, eyes) (Olivieri et al. 2004).

Finally, ecto-parasites nematodes can infect plants with-
out penetrating the root of the host plant. On the other hand, 
the Endo-parasites nematodes causes diseases only when 
they penetrate underground parts of the host plant (Mugniéry 
2007; Stevenson et al. 2001).

Control of soil borne diseases

Soil-borne pathogens are difficult to survey because soil is 
a complex system in which different interactions take place, 
especially in a short time. The importance of studying these 
diseases in the long term is due to the highly spread of these 
disease worldwide (Fiers et al. 2012).

Although chemical control is easy, quick, and highly effec-
tive, it can have harmful effects on the environment, human 
health, aquatic ecosystems, and minimize beneficial soil micro-
organisms (Attia et al. 2022). The application of biocontrol is 
an alternative to suppress soil borne plant pathogens through 
different mechanisms such as parasitism, antagonistic, competi-
tion, and induction of resistance in host plants against patho-
gens (Shafique et al. 2016).

PGPRs have thepotential to promote plant growth through two 
pathways. First, by direct promotion of plant growth by nitrogen 
fixation, phosphate solubilization, potassium solubilization, phy-
tohormone production (IAA, cytokinin, ethylene and gibberel-
lins), and production of ACC deaminase. Second, by indirect 
promotion of plant growth by induced systemic resistance, pro-
duction of siderophore, antibiotics, exopolysaccharides, volatile 
oils, lytic, and protective enzymes (Singh et al. 2019).

Two categories of PGPRs are extracellular plant growth pro-
moting rhizobacteria (ePGPR) and intracellular plant growth 
promoting rhizobacteria (iPGPR). (ePGPR) may exist in the 
rhizosphere, on the rhizoplane, or in the spaces between the 
cells of the root cortex but (iPGPR) present generally inside 
the nodules of root host cells (Martínez-Viveros et al. 2010).

PGPR showed broad-spectrum biocontrol activity against 
plant diseases (Liu et al. 2017). Also, Khabbaz et al. (2019) 
recorded mixtures of compatible PGPR strains were effective 
and sustained control of a broad range of pests and diseases. 
Shafi et al. (2017) confirmed that Bacillus spp. (B. subtilis, B. 
amyloliquefaciens, B. firmus and B. pumilus can suppressed 
plant pathogens such as Fusarium spp., Pythium spp., Asper-
gillus flavus, and Rhizoctonia solani through competition, 
direct antibiosis, and induced resistance of hosts.

Also, Pertot et al. (2015) determined the potency of Coniothy-
rium minitans to inhibit Sclerotinia sclerotiorum and S. trifolio-
rum by production of chitinase and 1,3 glucanase, and Gliocla-
dium catenulatum can inhibit the following pathogens species of 
Rhizoctonia, Pythium, Phytophthora, Fusarium, Didymella, Bot-
rytis, Verticillium, Alternaria, Cladosporium, Helminthosporium, 
Penicillium, and Plicaria through toxins production.

Mycoparasitism by Streptomyces occurred against species 
of Fusarium, Rhizoctonia, Phytophthora, Pythium, Phytoma-
totricum, Aphanomyces, Monosprascus, Armillaria, Scle-
rotinia, Verticillium and Geotrichum. Likewise, Pertot et al. 
(2015) proved the inhibition capacity of Pseudomonas spp. 
against Pythium spp. and Rhizoctonia solani by production of 
antibiotics, siderophores, and volatiles. Also, application of 
Trichoderma sp., Bacillus and Pseudomonas have been found 
to be effective against root rot caused by soil borne patho-
gens in many crops (Shafique et al. 2016). Also, resent studies 
reported that plant growth promoting fungi have great ability 
to control Fusarium wilt disease through biochemical defense 
(Abd Alhakim et al. 2022; Attia et al. 2022). Finally PGPRs 
such as Pseudomonas fluorescens are very important agent 
against phyto-nematodes through systemic resistance induc-
tion of the host, it reduces the destructive effect resulting from 
these pathogens, which may include damage to up to 80% of 
vegetable crops, such as tomatoes (Timper et al. 2009).

Role of PGPR in disease management; 
detailed mechanisms

Direct mechanisms (Fig. 1)

Antibiotics production

Antibiotics production is considered one of the most effec-
tive bio-products used in bio-control of phyto-pathogens. 
Antibiotics are organic compounds with low molecular 
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weight produced by microorganisms at low concentrations 
to kill other pathogenic microorganisms (Saravanakumar 
et al. 2019).

Many antibiotics produced by various species of Pseu-
domonas such as 2, 4 diacetylphloroglucinol (DAPG), pyo-
luteorin, phenazine-1-carboxamide, phenazine-1-carboxylic 
acid, oomycin, and pyrrolnitrin exhibit antiviral, antibacte-
rial, and antifungal properties. Moreover, Bacillus species 
produce antibiotic lipopeptides such as iturin, bacillomycin, 
bacilysin, surfactin, zwittermicin, and fengycin (Khabbaz 
et al. 2015).

Antibiotics have been shown to be particularly effective 
against the target pathogen in vitro and/or in situ conditions. 
Some strains are known to produce more than one antibi-
otic that can suppress/kill one or more pathogens such as 
B. cereus UW85, which produces both zwittermicin and 
kanosamine (Milner et al. 1996). Moreover, both phenazine 
and DAPG as antibiotics are produced by genetically modi-
fied P. putida WCS358 to decrease disease development in 
field-grown wheat (Glandorf et al. 2001).

Hydrogen cyanide (HCN) production

HCN is considered one of the most important compounds 
that can be used for suppressing phyto-pathogens. HCN is a 
volatile compound that could inhibits the microbial growth 
(Siddiqui and Shaukat 2003). Stable complexes are formed 
when cyanide binds with the essential elements (Cu2+, Fe2+, 
and Mn2+); therefore, cyanide is considered a toxic material 

to most microorganisms. Most rhizobacteria have the ability 
to produce HCN such as Bacillus, Pseudomonas, and Rhizo-
bium (Admassie et al. 2020). Rhizobacteria have HCN syn-
thase enzyme in plasma membrane to form HCN from gly-
cine (Blumer and Haas 2000). The mechanism of action of 
the toxic effect of HCN is attributed to the ability to inhibit 
cytochrome oxidase and electron transport, which leads to 
interrupting the supply of energy to the cells (Jagadeesh and 
Kulkarni 2003).

Lytic enzyme production

PGPR are the major producers of lytic enzymes. Cell wall 
degrading enzymes (CWDEs) were produced at the site of 
the pathogen leading to openings in the cell wall and subse-
quent disorganization of cytoplasm of the pathogen (Jeffries 
1995; Köhl et al. 2019). There are many enzymes responsi-
ble for degrading the cell wall such as chitinases, b-1,3-glu-
canases, and proteases (Jeffries 1995). These lytic enzymes 
are inducible where their production is triggered by signals 
after recognition of the host. Transcriptional reprogram-
ming occurs and molecular weapons involved in prey attack 
and lysis, including certain CWDEs, are expressed. Lectins 
at the surface of the prey cell wall, surface properties, and 
secondary metabolites play important roles in the recogni-
tion and signaling pathways such as MAPK cascades, cAMP 
pathway, and G-protein signaling (Karlsson et al. 2017).

Degradation of toxins

Detoxification of pathogen toxins is an important mecha-
nism for biological control. Many PGPR have the ability to 
hydrolyze toxins, such as B. cepacia anddR. solanacearum, 
for example, fusaric acid, which is produced by the Fusarium 
species, could be hydrolyzed (Toyoda and Utsumi 1991). 
Nagarajkumar et al. (2005) reported the P. fluorescens strain 
PfMDU2 could detoxify oxalic acid by P. fluorescens strain 
PfMDU2 in the biological control of sheath blight of rice 
caused by R. solani. Moreover, seed treatment followed by soil 
application of rice with P. fluorescens strain PfMDU2, car-
rying an oxalic acid detoxifying gene in plasmid, reduced the 
severity of sheath blight by 75% compared with the control.

Indirect mechanisms (Fig. 1)

Siderophore production

Siderophores are low molecular weight metabolites with a 
high affinity for Fe3+. When PGPRs recognize Fe3+ through 
a specific siderophore receptor protein, siderophores could 
chelate Fe3+ from the environment and transport the iron 
into microbial cells (Wilson et al. 2016).Fig. 1   Mechanism of PGPR action against plant diseases and plant 

growth promotion
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The presence of siderophore-producing organisms in 
close vicinity to plant roots is known to protect the plant 
from pathogenic organisms by chelating the available iron 
and making it unavailable to pathogens. This phenomenon 
is called siderophore-mediated suppression of plant patho-
gens, where PGPR can be selected for biological control 
through competition for iron with pathogens that produce 
lesser amounts of siderophores with lower affinity for iron 
(Khabbaz et al. 2015; Lugtenberg and Kamilova 2009).

This mechanism has been investigated in particular for 
isolates of Pseudomonas spp., where pathogen populations 
in rhizospheres are reduced due to the presence of sidero-
phores, which leads to a decrease of iron around the patho-
gen (Raaijmakers and Mazzola 2012; Wilson et al. 2016).

As a cell component, iron deficiency results in growth 
inhibition, decreased DNA and RNA synthesis, a reduction 
in sporulation, changes in morphology, and alterations in the 
energy required for the tricarboxylic acid cycle (TCA), electron 
transport chain, and oxidative phosphorylation (Leong 1986).

Induced systemic resistance (ISR)

Application of PGPR was shown to trigger a plant-mediated 
resistance in the vegetative part above ground (Wei et al. 
1991) in many plant species, including potato, tomato, bean, 
tobacco, radish, and cucumber (Van Loon et al. 1998). Phe-
notypically PGPR-mediated ISR resembles pathogen resist-
ance enhancement in which non-infected parts of a previ-
ously infected plant can overcome the next infection, referred 
to as systemic acquired resistance (SAR) (Ross 1961).

The main difference between ISR and SAR are first ISR is 
promoted by nonpathogenic PGPR, while SAR is enhanced 
systemically after inoculation with pathogens. Second, 
ISRs include lipopolysaccharides and salicylic acid (SA). 
Whereas some of the rhizobacteria have activate resistance 
through the SA-dependent SAR mechanisms, but others 
mechanisms require jasmonic acid and ethylene percep-
tion. SAR is accompanied by the induction of pathogenesis 
related proteins (PR) (Van Loon et al. 1998).

ISR presented many different changes as follows: (1) 
encouragement of epidermal and cell walls and deposition 
of newly formed barriers beyond infection sites, including 
lignin, callose, and phenolics; (2) enhancement enzyme 
activity such as polyphenol oxidase, peroxidase, chitinase, 
and phenylalanine ammonia lyase; (3) promote phytoalexin 
production; and (4) improve expression of stress-related 
genes (Timmusk and Wagner 1999). However, these changes 
may be present singly or in combination (Steijl et al. 1999). 
Protection from diseases by biocontrol and its consistency 
in the field are generally not sufficient to compete with con-
ventional methods of disease control. Moreover, the combi-
nation of ISR and SAR that results in an improve protection 
against specific bacterial pathogens (van Wees et al. 2000) 

offers great potential to integrate both forms of induced 
resistance in agricultural practices.

Root colonization

Rhizosphere colonization is important not only as the first 
step in pathogenesis of soil borne microorganisms but also 
is crucial in the application of microorganisms for beneficial 
purposes (Lugtenberg et al. 2001). PGPR generally improves 
plant growth by colonizing the root system and pre-empting 
the establishment of or suppressing deleterious rhizosphere 
microorganisms (Schroth and Hancock 1982).

PGPR must be able to compete with the indigenous 
microorganisms and efficiently colonize the rhizosphere of 
the plants to be protected. Colonization is widely believed 
to be essential for biocontrol (Parke 1991; Weller and Cook 
1983), and a biocontrol agent should grow and colonize the 
root surface. Colonization or even initial population size of 
the biocontrol agent has been significantly correlated with 
disease suppression (Parke 1991). Cell surface characteris-
tics influence the attachment of bacteria to roots, which may 
be necessary for colonization. Certain mutants that affect 
accumulation of secondary metabolites also influence colo-
nization of roots in the field (Mazzola et al. 1992).

Analysis of mutants indicates that prototrophy for amino 
acids and vitamin B1, rapid growth rate, utilization of 
organic acids and lipopolysaccharide properties contribute to 
colonization (Lugtenberg et al. 2001). A variety of bacterial 
traits and specific genes contribute to colonization but only 
few have been identified (Benizri et al. 2001; Lugtenberg 
et al. 2001).

These include motility, chemotaxis to seed and use spe-
cific components of root exudates, production of pili or 
fimbriae, production of specific cell surface components, 
ability of protein secretion, and quorum sensing (Lugten-
berg et al. 2001). Competition of introduced bacteria with 
indigenous microorganisms already present in the soil and 
rhizosphere of the developing plant is another important 
aspect for root colonization.

Formulation

PGPRs make up the largest amount of the bio-pesticide 
market, predicted to attain USD 1.67 billion by 2022 
(Arthurs and Dara 2019). Although PGPRs are very effec-
tive as control agent against broad spectrum of many plant 
diseases in vitro, they have very low commercial avail-
ability as in vivo application due to the difficulties in han-
dling, and care is important at all steps from production 
till end use not only to maintain the microbial activity 
after loading but also to improving efficacy (Shaikh and 
Sayyed 2015).



	 Tropical Plant Pathology

1 3

Good commercial formulate, as shown in Fig. 2, are 
mainly characterized by long shelf life. It should not be 
harmful to plants, it should be well dissolved in water, 
should release the bacteria after dissolving in water, low 
cost, more effective than agrochemicals and the carriers 
must be cheap, live in and tolerate adverse condition, and 
readily available for formulation development (Nakkeeran 
et al. 2006; Shaikh and Sayyed 2015).

The first step for establishment of effective formulation 
is the production of a PGPR strain in huge amounts. This 
needs the selection of a proper, cheap, and easily avail-
able medium. Mass production is achieved through liquid, 
semisolid, and solid state fermentation techniques (Shaikh 
and Sayyed 2015).

Types of formulations

There are two forms, dry powder (solid) and liquid suspen-
sions. In dry powder (solid) carrier used may be talc, peat, 
lignite, vermiculate, kaolinite (Gupta 2005). The powder is 
normally spray-dried or lyophilized biomass with practically 
no free moisture for the growth of bacteria but this method 
can be used for spore forming microbes by freeze-drying or 
air-drying. In moist powder, culture organisms that do not 
form a mat of biomass can easily be formulated into a moist 
powder, and granular formulations usually contain metaboli-
cally active microbes for spraying, seed coating, or direct 
into the soil (Shaikh and Sayyed 2015).

Liquid formulation carrier based allows adding a suf-
ficient amount of nutrients, cell protectants, and inducers 

responsible for cell/spore/cyst formulation, thus ensuring a 
longer shelf life than dry powder (Brar et al. 2012).

Control of fungal soil‑borne diseases by PGPR

Fungal pathogens cause serious damage diseases on many 
vital crops. The host-ranges of fungi widely differ, more 
than any other plant pathogens. Some of them are narrowly 
specialized to closely related plants, whereas other patho-
gens are have a broad spectrum of plant hosts, for example, 
oomycetes attack five crops – potato, maize, rice, wheat, and 
soybean (Newman and Derbyshire 2020).

More than 19,000 fungal pathogens can infect and may 
partially or completely destroy crops worldwide and may 
remain dormant until favorable conditions, and they are eas-
ily dispersed by different mechanisms such as insects, wind, 
water, and soil (Jain et al. 2019). Fungal pathogens are the 
main destructive and distributed plant pathogen, as they rep-
resent about 80% of crops diseases that cause serious crops 
and economic inhibition (Dayarathne et al. 2020).

Fungi are a more abundant soil borne pathogen than bac-
teria. There are an estimated 8,000 fungal species that cause 
diseases in plants (see Table 1). Most of them attack roots 
leading to completely or partially destroyed plants and crops 
by yellowing root rot, wilting, stunting, dieback, stem collar, 
and crown rot. Some common fungi include: Rhizoctonia, 
Fusarium, Alternaria Pythium, Phytophthora, Cylindrocla-
dium, Sclerotinia, and Sclerotium (Abdelaziz et al. 2021; 
Ghosh et al. 2019; Hashem et al. 2021). Rhizoctonia solani 
is considered a major soil-borne plant pathogenic fungus 
that causes different diseases in solanaceous crops resulting 
in annual crop loss (20–40%) worldwide (Ghosh et al. 2017).

Islam et al. (2012) recorded the potency of Bacillus spp., 
Pseudomonas spp., and Streptomyces spp. as biological 
control agents. Application of PGPR have several possible 
mechanisms against fugal soil borne diseases, including the 
production of fungi toxic metabolites such as siderophores 
production, HCN, fungal cell wall degrading enzymes, com-
petition for essential nutrients such as space, antagonism as 
deform the morphology of mycelium, suppressing the myce-
lia growth and break down fungal cell walls, plant growth 
promotion by plant growth regulators as IAA, auxins, cyto-
kinins, riboflavin, and vitamins. Also, hormonal interactions 
and nutrient uptake and induction of the defense responses in 
plants via ethylene and JA-dependent pathways (see Table 1 
and Fig. 3) (Gowtham et al. 2016).

Where the last mechanism is considered one of the most 
promising strategies for crop safeguard, in this strategy, 
there are no direct effects on the pathogen but the natural 
defenses system in plant is activated, which is called a sys-
temic acquired resistance (Goel and Paul 2015; Walters and 
Fountaine 2009).

Fig. 2   Factors affecting PGBR formulation
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Systemic acquired resistance is associated with the pro-
duction of endogenous elicitor by the plant such as accumu-
lation of salicylic acid, indole acetic acid (IAA), abscisic 
acid (ABA), jasmonic acid (JA), and several lipo-peptides 
such as bacillomycin, mycosubtilin, surfactin, iturin, and 
fengycin, also stimulate plant defense systems through dif-
ferent molecular pathways at the transcriptional level and 
induction of enzymes chitinase, β-1,3-glucanase, peroxidase, 
and polyphenol oxidase (Abbasi et al. 2019; Angelopoulou 
et al. 2014; Attia et al. 2020).

The most vital characteristic of the members of Bacil-
lus spp. is endospore former, which helps the durability of 
bacteria in nature and can last for perhaps millions of years 
(Zimina et al. 2016). These bacteria can produce ethanol, 
H2, acetone, acetic, formic, lactic, and succinic acids by fer-
mentation of glucose. Especially Bacillus subtilis YM 10–20 
can produce anti-fungal compounds (Chitarra et al. 2003).

Sansinenea and Ortiz (2011) recorded that antifungal 
metabolites of Bacillus species are resistant to temperature 
and pH changes and do not lose their antifungal activities. 
Bacillus megaterium KL39, a biocontrol agent, produces an 
antifungal active against a broad range of plant pathogenic 
fungi (Jung and Kim 2003).

Also, Li et al. (2014) recorded that Bacillus amylolique-
faciens strain SQR9 showed activities against a broad 
spectrum of fungal soil borne pathogens such as Fusarium 
solani, Sclerotinia sclerotiorum, Verticillium dahliaekleb, 
Phytophthora parasitica, and Fusarium oxysporum by the 
production of different antifungal compounds.

These antifungal metabolites vary according to patho-
gen such as the following lipopolysaccharide bacillomycin 

against Fusarium oxysporum; fengycin produced against 
Verticillium dahliaekleb, Fusarium oxysporum, Fusarium 
solani, and Phytophthora parasitica; Surfactin against Scle-
rotinia sclerotiorum, Rhi-zoctonia solani, and Fusarium 
solani but bacillibactin effective against Fusarium solani, 
Sclerotinia sclerotiorum Verticillium dahliaekleb, rhizotonia 
solani, Phytophthora parasitica and Fusarium oxysporum.

Also, many researchers proved the activity of Bacillus 
against root rot and damping caused by Rhizoctonia solani by 
various antibiotics such as iturin A, surfactin, plipastatin, baci-
lysin, mycobacillin, and mycosubtilin (Maget-Dana and Pey-
poux 1994; Sengupta et al. 1971; Walker and Abraham 1970).

Akram and Anjum (2011) recorded the ability of B. for-
tis 162 and B. subtilus 174 against Fusarium wilt of tomato 
through induction of systemic resistance in tomato plants, 
increasing the level of phenyl ammonia lyase (PAL), PPO, and 
PO and significantly reduced tomato Fusarium wilt severity.

In addition, Nain et al. (2012) recorded the activity of 
Bacillus species through acetyl-CoA carboxylase (ACC) de-
aminization activity, phosphorous solubilization ability, fun-
gicidal, IAA production, and ammonia production activity. 
Which resulted to significantly enhanced seed germination, 
fresh and dry weight, leaf area, root and shoot length, and 
increasing yield.

Pseudomonas spp. have distinctive characteristics that 
make them a vital biocontrol agent, such as colonization 
and proliferation inside the plant, competition with other 
microorganisms, adaptation to stresses, and they produce 
a wide spectrum of active biological metabolites such as 
antibiotics, Siderophores, volatile compounds, and growth 
stimulant compounds (Stockwell and Stack 2007).

Fig. 3   Biocontrol of fungal 
plant diseases by PGBR and 
other important factors
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Pseudomonas fluoresces are reported to have antagonistic 
activity toward soil-borne plant pathogens (Ali Siddiqui and 
Ehteshamul-Haque 2001) through production of certain anti-
biotics (Raaijmakers et al. 2002) such as 2, 4-diacetylphlo-
roglucinol (Raaijmakers and Weller 1998) and siderophores 
(De Meyer and Höfte 1997).

Weller (2007) reported the potency of Pseudomonads as 
biocontrol and growth promoting agents. Pseudomonas sp. 
produce secondary metabolites such as 2, 4-diacetylphloro-
glucinol, lipopeptides, phenazines, pyrrolnitrine, pyochelin, 
and hydrogen cyanide, which have an inhibitory effect in 
vitro as in field conditions against root diseases when intro-
duced into the seed or soil treatments (Haas and Defago 
2005, Reddy et al. 2009; Siddiqui and Shaukat 2003). Also, 
Pseudomonas fluorescence have extracellular diffusible 
pigments such as pyoverdin, pyochelin, and ferripyoverdin, 
which may illustrate their potential to control seed- and soil-
borne pathogenic fungi and oomycetes (Keel et al. 1992).

Pseudomonas produce indole acetic acid (IAA), which 
helps to enhancement plant growth by increasing root length, 
cell division, and cell enlargement by increasing absorption 
of water and nutrients also enhancing the capacity to anchor 
to the soil (Salisbury 1994). Pseudomonas fluorescens can 
produce cytokinins, which promote cell divisions and cell 
enlargement (García de Salamone et al. 2001).

Another mechanism to inhibition of phytopathogens by 
Pseudomonas spp. is production of siderophores during 
iron starvation (Geels and Schippers 1983). Also Pseu-
domonas spp. can produce pyoluteorin, pyrrolnitrin, phena-
zines, cyanide, 2, 4-diacetylphloroglucinol (Compant et al. 
2005), and enzymes that can destroy fungal cells, i.e. cellu-
lose, chitinase, proteases, and beta-glucanase (Hernández-
León et al. 2015).

Another mechanism of PGPR is detoxification of viru-
lence factors where Burkholderia cepacia has potency to 
hydrolyze fusaric acid, a phytotoxin produced by Fusarium 
species by controlling the sensing capacity of pathogens by 
inducting auto inducer signals and thus arresting the expres-
sion of virulence factor (Compant et al. 2005).

Bacillus subtilis spp. strains have shown antifungal activ-
ity against Fusarium oxysporum (Yuan et al. 2013), Puc-
cinia striiformis (Reiss and Jorgensen 2017), Rhizoctonia 
solani (Asaka and Shoda 1996), and Pythium aphaniderma-
tum (Leclère et al. 2005). Based on the above research and 
experiences, Bacillus species such as B. amyloliquefaciens, 
B. licheniformis, B. pumilus, and B. subtilis are available in 
the market as bio-fungicide formulations as excellent control 
agents against plant fungal diseases (Pérez-García et al. 2011).

Finally, the scarcity of information about some fugal soil-
borne diseases is probably because these diseases are present 
in isolated zones such as Phoma leaf spot, Rosellinia rot, and 
Thecaphora smut (Fiers et al. 2012).

Control of bacterial soil‑borne diseases by PGPR

Plant pathogenic bacteria are widely spread over the world 
representing approximately 7100 plant pathogens that belong 
to Erwinia, Xanthomonas, Agrobacterium, Pseudomonas, 
Ralstonia, and Pectobacterium (Aguilar-Marcelino et al. 
2020; Mansfield et al. 2012). Bacterial plant pathogens cause 
serious crop losses throughout the world (Krueger 2004).

There are many bacterial plant pathogens that have a 
broad crops range worldwide, including Pseudomonas syrin-
gae (infected crops ranging from potato to banana, olive, 
phaseolicola, and tomato), Ralstonia solanacearum (infected 
crops ranging from tobacco, potato, eggplant, tomato, and 
banana), Agrobacterium tumefaciens, Xanthomonas, and 
Erwinia amylovora (Mansfield et al. 2012). Bacterial dis-
eases are one of the most important biotic stresses of plant 
crop production (Campos and Ortiz 2020).

Mansfield et al. (2012) ranked the top ten plant pathogenic 
bacteria as the follows: Pseudomonas syringae, Ralstonia 
solanacearum, Agrobacteruim tumefaciens, Xanthomonas 
sp., Erwinia sp., Dickeya sp., Xylella sp., Pectobacterium 
sp. and pseudomonas sp. Plant bacterial diseases symptoms 
often appear as leaf spots, specks, wilts, blights, rots, can-
kers, scabs, and galls accompanied mostly by the production 
of toxins or enzymes that lead to host-plant break down and 
death (Ellis et al. 2008).

Ralstonia solanacearum is considered one of the most 
dangerous soil borne pathogens because R. solanacearum 
has a wide host range of more than 200 species in 50 fami-
lies, especially solanaceous crops such as potato, pepper, 
eggplant, and tomato, and it causes yield reduction up to 
90 to 100% (Kipgen and Bora 2017; Yanti et al. 2022). 
Moreover, in potato alone, R. solanacearum led to world-
wide annual crop loss estimated at US$ 1 billion (Tomlin-
son et al. 2005).

Commercially, fewer biological control products for bac-
terial diseases of plants are available than for fungal diseases 
and often a combination of more than one biological control 
agent is used (Arwiyanto 2014). The application of PGPRs 
as biological control agents against plant disease in most 
agricultural crops such as Agrobacterium sp., Klebsiella 
sp., Burkholderia sp., Azotobacter sp., Bacillus sp., Pseu-
domonas sp., Enterobacter sp., Rhizobium sp., and Serra-
tia sp. was studied by (Mishra and Arora 2018; Sindhu and 
Dadarwal 2001).

Rai et al. (2017) recorded the application of Pseudomonas 
protegens against R. solanacearum through different path-
ways and the production of antimicrobial metabolites such as 
diacetyl phloroglucinol, pyoluteorin, pyrrolnitrin, and HCN. 
B. subtilis ATCC6633 can produce bacteriocin, which can 
inhibit the germination of Clostridium sp. that causes soft 
rot of potato (Chatterjee et al. 2005).
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Rajer et al. (2017) illustrated the potency of Bacillus sp. 
against Clavibacter michiganensis through production of 
volatile compounds that have antimicrobial activity such as 
benzaldehyde, nonanal, benzothiazole and acetophenone and 
against Xanthomonas axonopodis by production of bacil-
laene, bacillibactin, butirosin, bacilysin, carotenoid, diffi-
cidin, fengycin, haloduracine alpha, ladderane, lichenysin, 
microcin, plipasain, and surfactin.

Bacillus sp. have broad spectrum activity against plant 
bacterial diseases such as common scab, ring rot, bacte-
rial wilt, bacterial speck, and bacterial spot by different 
mechanisms; first, through competition mechanism because 
Bacillus sp. have a potency to replicate rapidly, resistant 
to adverse environmental conditions such as Bacillus sp. 
produces endospores resistant to UV light and heat, which 
allows them to survive in harsh environmental conditions 
(Raaijmakers et al. 2002); second, B. subtilis can produce 
volatile compounds that play a vital role in plant growth 
enhancement and activation of induced systemic resistance 
(ISR) in host plants (Compant et al. 2005).

Banerjee et al. (2017) proved that B. cereus IB311 has 
good bio-controlling activity because it is safe, cost effec-
tive, and has a positive impact on the agricultural field. 
Sharga and Lyon (1998) reported that Bacillus subtilis Bs 
107 had complete activity in vivo against E. carotovora 
subsp. carotovora and E. carotovora subsp. atroseptica.

Lactic acid bacteria (LAB) act as effective bio-fertilizers 
and bio-stimulants, improving nutrient availability, minimal 
biotic and abiotic stresses, and directly stimulate plant growth 
(Hamed et al. 2011; Lamont et al. 2017; Shrestha et al. 2014).

Shrestha et al. (2009) showed that LABs can suppress soil 
borne bacterial pathogens and improve plant growth such as 
bacterial spot in pepper and tomato as well as bacterial wilt 
(R. solanacearum) in pepper. LAB act as biological control 
of pathogenic bacteria through different microorganisms as 
they produce one or more antimicrobial metabolites, such as 
organic acids, mainly lactic and acetic acids, carbon diox-
ide, diacetyl, hydroxide peroxide, and other antimicrobial 
peptides such as bacteriocins (Arena et al. 2016; Cortés-
Zavaleta et al. 2014; Herreros et al. 2005; Reis et al. 2012; 
Tharmaraj and Shah 2009).

Organic acids diffuse through the cytoplasmic membrane 
of pathogens in their hydrophobic form and then reduce 
intracellular pH and stop metabolic activities which gener-
ally restricts growth of pathogenic bacteria. Also, hydrogen 
peroxide, which is produced and accumulated by LAB in 
the presence of oxygen, has a toxic effect on bacterial patho-
gens, especially that they cannot produce catalase enzymes 
(Dalié et al. 2010; Reis et al. 2012). Also, LAB may over-
come pathogens by pre-emptively colonizing plant tissues 
(Tsuda et al. 2016), which creates competition for nutrients 
and space, or by induction defense responses of hosts toward 
the pathogen (Konappa et al. 2016).

PGPRs have potency to enhance plant growth under field 
conditions by solubilizing precipitated phosphates to host 
plants, through many ways such as synthesis of organic 
acids or protons (Richardson et  al. 2009; Verma et  al. 
2001), chelation, and substitution reactions (Hameeda et al. 
2008). PGPRs can also promote nodulation, nitrogen uptake, 
growth and yield (Sekar and Kandavel 2010).

Some PGPR strains have another mechanism to control 
pathogens by inhibition of virulence factor by secretion 
protein molecules that detoxify the pathogens toxins (see 
Table 2) (Compant et al. 2005).

Many strains of Streptomyces spp. produce antibacterial 
metabolites or antibiotics, which are active against several 
plant pathogens. In addition, Streptomyces sp. have the poten-
tial to significantly reduce the severity of potato scab caused 
by Streptomyces scabies (Liu et al. 1995; Ryan et al. 2004).

P. fluorescens has the capacity to control potato soft rot 
disease caused by Pectobacterium atrosepticum and Dickeya 
spp. through inhibition of enzymes that hydrolysis the tuber 
wall (Jafra et al. 2006; Kastelein et al. 1999). Also, Pseu-
domonas spp. and Bacillus spp. have great potency against 
potato diseases (Kempe and Sequeira 1983).

Furthermore, Pseudomonas sp. 23S, has antagonistic 
activity against Clavibacter michiganensis subsp. in vitro 
and in vivo in addition to application as plant growth pro-
moting agents. This antagonistic activity is explained by 
different mechanisms through its ability to induce ISR in 
infected tomato plants and reduce the severity of bacterial 
canker disease caused by this fungus, as well as to its ability 
as a PGPR agent.

The activity of Pseudomonas sp. 23S against C. michi-
ganensis depends on several factors; first, the best time for 
treatment with Pseudomonas sp. is five days before patho-
gen attack; second, the method of inoculation, where stem 
inoculation is more effective; and finally, age of plants, 
where young tomato plants are more sensitive (Takishita 
et al. 2018).

Shrestha et al. (2014) recorded three strains of Bacillus 
that have antibacterial potency against bacterial leaf spot 
of tomato and pepper of Xanthomonas vesicatoria in the 
greenhouse and field, which showed decreased bacterial 
leaf spot severity when inoculated with the three Bacillus 
strains.

Recently, Principe et al. (2018) demonstrated that applica-
tion of P. fuorescens SF4c, after 12 h of infection of tomato 
plants with Xanthomonas vesicatoria, resulted in reduction 
of the spot disease symptoms on tomato fruit because P. 
fuorescens can produce tailocins.

More recently Marin et al. (2019) reported that Bacil-
lus and Pseudomonas have potential biological activity for 
different species of Xanthomonas sp. singly, but the com-
bination of several strains have more potency against Xan-
thomonas sp.
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The Bacillus subtilis QST 713 strain is commercially 
available against Xanthomonas sp. that cause bacterial spot 
in tomato, peppers, eggplants, and potatoes (Pritchard et al. 
2016). Dickeya sp. causes bacterial soft rot, which is the 
major destructive diseases of potato (Solanum tuberosum) 
grown worldwide (Czajkowski et al. 2015; Pritchard et al. 
2016). Dickeya potato soft rot disease is difficult to control 
because the pathogen is able to spread via water, survive on 
field weeds and plant debris (Gardan 2005).

Serratia plymuthica A30 has antagonistic activity against 
Dickeya spp. in vitro and in vivo (Hadizadeh et al. 2019). 
More recent reports suggest another strategy to control the 
potato soft rot and blackleg diseases using a combination 
of biocontrol strains (Krzyzanowska et al. 2019, Raoul des 
Essarts et al. 2016).

Several studies have shown that Bacillus, Serratia, Pseu-
domonas, Lactobacillus, Delftia, Ochrobactrum, and Rho-
dococcus could be used as biocontrol agents against potato 
soft rot disease by various mechanisms such as competi-
tion, inhibition, or by ISR in potato plants (Czajkowski et al. 
2011; Diallo et al. 2011; Jafra et al. 2006).

Biocontrol of nematode diseases by PGPR

Nematodes are plant pathogens that spread in different areas 
on corps such as wheat, barley, and oats and attack more 
than 50% of major European cereal-growing areas (Subbotin 

et al. 2003). Root-knot nematodes attack a wide range of 
vegetables, including cucumber, mint, beans, cucurbits, and 
peach (Tariq-Khan et al. 2017). Nematodes are the major 
biotic agents on crops that attack all plant crops and cause 
billions of dollars in crop losses annually (Bozbuga et al. 
2018).

Nematodes diseases are one of the most destructive 
biotic stresses of crop production in world agriculture caus-
ing economic losses estimated up to 12.3% to 20% of plant 
crops worldwide (Koenning et al. 1999; Singh et al. 2015). 
The global economic losses due to nematode attacks are 
estimated to be about $157 billion every year (Singh et al. 
2015). Nematodes act as vectors for some plant viral dis-
eases (Brown et al. 2004). Nematodes are directly targeting 
the root system of the host plant, which obstructs the water 
and nutrient uptake, resulting in reduction of agronomic per-
formance, and seriously effects the quality and yield of crop 
plants (Singh et al. 2015).

There are various ways available for limiting this damage, 
such as to use resistant cultivars, nematicides, crop rotation, 
and biological control. Unfortunately these practice are not 
always effective because nematodes are capable of forming 
protective cysts, gelatinous matrix, and surviving in the soil 
without a host. Finally, biological control is the most effective 
and efficient way to overcome the nematodes (Timper 2014).

The main mechanism of biological control is competition 
by reduction of the populations of nematodes by increasing 

Table 2   Biocontrol of bacterial plant pathogens by PGPR

Disease Causative pathogen Host PGPR Mechanism of action References

Soft rot Erwenia carotovora 
and Clostridium spp.

Potato Pseudomonas sp. siderophores produc-
tion and induce ISR

(Leeman et al. 1996)

Common scab Streptomyces scabies Potato Bacillus subtilis, 
and Pseudomonas 
species

affect the soil micro-
bial community

and Enzyme produc-
tion

(Singhai et al. 2011; 
Wang et al. 2019)

Bacterial Blackleg and 
Tuber Soft Rot

Pectobacterium and 
Dickeya

Potato Lactobacillus sp., and 
Pseudomonas sp.

Antagonists sidero-
phores, antibiotics 
and surfactants pro-
ducing

(Arseneault et al. 2016; 
Compant et al. 2005; 
Raoul des Essarts 
et al. 2016; Tomihama 
et al. 2016; Tsuda 
et al. 2016)

Ring Rot Clavibacter michigan-
ensis

Potato Bacillus subtilis FA26 Production of volatile 
organic compounds

(Rajer et al. 2017)

Bacterial wilt or 
Brown rot or south-
ern bacterial wilt

Ralstonia solan-
acearum

Potato, tomato and 
black pepper

Pseudomonas, Strepto-
myces, Serratia, and 
Bacillus cereus

ISR and plant growth 
promotion, antibiotic 
production, enzyme 
production, competi-
tion and antagonists

(Aguk et al. 2018; 
Álvarez and Biosca 
2017; Chamedjeu 
et al. 2019; Guo et al. 
2004; Mahmoud 2007; 
Thanh et al. 2009)

Bacterial speck Pseudomonassyringae Tomato Azospirillium brasi-
lense, Bacillus, and 
Paenibacillus sp.

Secondary metabolites 
production

(Bashan and De-Bashan 
2002; Liu et al. 2017)

Bacterial spot Xanthomonas axono-
podis

Tomato and pepper Bacillus and Paeniba-
cillus sp.

Secondary metabolites 
production

(Liu et al. 2017)
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the natural enemies in the soil. Soil is a reservoir for micro 
floras that are highly varied in composition and activity 
(Mendes et al. 2013). Use of biological control agents helps 
to maintain ecological balance as is safe for the environment. 
Also biological agents remain effective in soil for long peri-
ods (see Table 3 and Fig. 4) (Trudgill et al. 2000).

Control of nematodes is very difficult because of their 
inhabitation and parasitism mode (Gillet et al. 2017). PGPRs 
reduce nematodes severity by inducing plant systemic 
resistance, which is achieved by mechanical and physical 
strengthening of the plant cell wall by cellulose precipitation 
and phenolic accumulation or by synthesis of biochemical 
metabolites (Pieterse et al. 2002; Ramamoorthy et al. 2001), 
or by mutualism with plant host (Karthik et al. 2017), or by 
competition, production of siderophores, and alteration of 
specific root exudates such as polysaccharides and amino 
acids (Jacobs and Crump 2003, Kavitha et al. 2007; Negi 
et al. 2011; Tobin et al. 2008).

Several PGPR were also reported as antagonists of plant 
parasitic nematodes, including the members of the genera 
such as Bacillus, Rhizobium, Pseudomonas, Klebsiella, 
Phyllobacterium, Methylobacterium, Agrobacterium, Bei-
jerinckia, Actinomycetes, Bradyrhizobium, Arthrobacter, 
Aureobacterium, Corynebacterium, Desifovibri, Alca-
ligenes, Streptomyces Azotobacter, Azospirillum, Stenotro-
trophomonas, Curtobacterium Hydrogenophaga, Serratia, 
Desulforibtio, Burkholderia, Comamonas, Chromobacte-
rium, Gluconobacter, Clostridium, Clavibacter, Entero-
bacter, Phingobacterium, Flavobacterium, and Variovorax 
(Siddiqui and Mahmood 1999; Tian et al. 2007; Wani et al. 
2015).

Almaghrabi et al. (2013) and Siddiqui and Akhtar (2009) 
reported that Pseudomonads putida, Serratia marcescens, 
Pseudomonads fluorescens, Bacillus subtilis, Bacillus 
amyloliquefaciens, Bacillus cereus, Paenibacillus polymyxa, 
and Burkholderia cepacia have potency against Meloidogyne 
incognita that infected tomato plants. Also, Bacillus subtilis 
was applied as a biological control against Rotylenchulus reni-
formis and Azotobacter chroococcum against Meloidogyne 
incognita (Chahal and Chahal 2003; Niknam and Dhawan 
2001). Stenotrophomonas maltophilia, B. mycoides, and Pseu-
domonas sp. were used against Paratrichodorus pachydermus 
and Trichodorus primitivus; also in addition, Pseudomonas 
oryzihabitans and Rhizobium etli against Globodera that 
infected potato (Insunza et al. 2002; Reitz et al. 2000).

Control of viral diseases by PGPR

Plant viral diseases are considered one of the major crops 
pathogens worldwide that can attack allium crops such as 
garlic, onion, shallot, and leek (Lefeuvre et al. 2019; Man-
souri et al. 2021). Viral plant pathogens are classified as 
specialist viruses that attack one or a few related crops and 
generalist viruses that have several different hosts that may 
be in different families (Kumar et al. 2020).

Diseases caused by viruses generally appear on the foliar 
level as leaf deformation, mosaic, ruckle, necrosis, dwarf-
ing, and rolling. Only some viruses at underground systems 
such as tobacco rattle virus, potato mop-top virus, potato 
virus Y, and tobacco necrosis virus can destroy tubers of 
potatoes (Fiers et al. 2012). (Gaffney et al. 1993) proved 
the potency of the P. fluoresces strain CHA0 against viral 

Fig. 4   Effect of plant patho-
genic nematodes on plants and 
the biocontrol by PGPR
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pathogens not only by induction accumulation of salicylic 
acid, which plays an important role in signal transduction 
of systemic resistance, but also systemic acquired resistance 
proteins induction (see Fig. 5).

Moreover, Maurhofer et al. (1998) recorded that the P. 
aeruginosa PAO1 could improve induced systemic resist-
ance in tobacco against tobacco necrosis virus by induction 
of SA biosynthesis genes. Currently, endophytic fungi are 
promising smart biological control against plant pathogens 
as well as promotion of healthy plants through the induc-
tion of the systemic resistance of plants against diseases. 
Systemic resistance was achieved by reducing the percent 
of disease severity, increasing the content of photosynthetic 
pigments, the total carbohydrates, total soluble proteins, and 
phenols, as shown in Fig. 5.

Conclusion

Plant growth promoting rhizobacteria (PGPR) is one of the 
most promised strategies against many plant pathogens. 
Scientists tended to apply PGPR as safe eco-friendly induc-
ers to control a wide range of different plant pathogens such 
as fungi, bacteria, viruses, insects, and nematodes. The 

defense mechanisms of PGPR against plant pathogens may 
include production of antibiotic, hydrocyanic acid (HCN), 
Siderophores, lytic enzymes, and degradation of toxins. 
The role of PGPR is not only to inhibit the plant pathogens 
but also to activate and stimulate the systemic resistance in 
the plant.PGPR can improve plant health through stimu-
lating the production of substances responsible for physi-
ological defense as phenols, proline, antioxidant enzymes, 
salicylic acid, jasmonic acid, and production of a group 
of pathogeneses related proteins. PGPR can also, building 
plant structural defense components such as lignin, cel-
lulose, and surface waxes. Therefore, the application of 
PGPR is considered a promising safe bio-effective strat-
egy to control plant diseases instead of harmful chemical 
methods.
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